

Спецификация конкурсных материалов для проведения *практического* этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» в номинации «ИТ-класс» по направлению Большие данные и технологии искусственного интеллекта

1. Назначение конкурсных материалов

Материалы *практического* этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» (далее — Конкурс) предназначены для оценки уровня *практической* подготовки участников Конкурса.

2. Условия проведения

Практический этап Конкурса проводится в *очной форме на базе вуза или очной дистанционной форме*. При выполнении работы обеспечивается строгое соблюдение порядка организации и проведения Конкурса.

Если этап проводится в очном дистанционном формате с использованием технологии прокторинга. Участникам необходимо иметь компьютер (ПК или ноутбук; прохождение диагностики на мобильных устройствах - невозможно) с выходом в Интернет, веб-камерой и микрофоном, а также смартфон (или планшет) со стабильным интернетом и приложением для считывания QR-кодов. Требуется предварительная настройка оборудования:

https://im.mcko.ru/docs/Инструкция_для_участника_конкурса_Интеллектуальный_мегапо лис_Потенциал.pdf. Браузер разрешается использовать только для прохождения заданий этапа и процедуры прокторинга.

Дополнительное ПО, разрешенное для прохождения: компьютеры. На компьютерах установлена версия Python 3.12 или выше, а также интегрированные среды разработки (IDE) PyCharm и Visual Studio Code. Участники имеют доступ к необходимым библиотекам Python, включая питру, pandas и matplotlib, которые настроены и готовы к использованию. Для работы с базами данных на компьютерах также установлена СУБД PostgreSQL и визуальный интерфейс pgAdmin или DBeaver.

Чем пользоваться категорически нельзя (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса.

3. Продолжительность выполнения

На выполнение заданий *практического* этапа Конкурса отводится *150* минут. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив *ответственного от вуза*. Мероприятие не продлевается на время отсутствия участника.

4. Содержание и структура

Индивидуальный вариант участника включает 8 заданий, базирующихся на содержании элективных курсов Введение в ИТ-специальность и Информационные технологии. Задания 5, 6 предусматривают решение одного задания из списка на выбор.

5. Система оценивания

Задание считается выполненным, если ответ участника совпал с эталоном. Максимальный балл за выполнение всех заданий – 60 баллов.

6. Приложения

- 1. План конкурсных материалов для проведения практического этапа Конкурса.
- 2. Демонстрационный вариант конкурсных заданий практического этапа Конкурса.
- 3. Пример решения задач

Приложение 1

План конкурсных материалов для проведения практического этапа Конкурса

№ задан ия	Выбор задания для решения	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1.	-	базовый	Библиотека pandas.	Знать:	5
2.	-	базовый	Библиотека питру.	Знать: - Структуру и назначение массива пdarray - Основные операции с массивами: арифметика, трансформация формы, индексация - Функции генерации данных: arange, linspace, random	5

				- Создавать	
				одномерные и	
				многомерные	
				массивы	
				- Выполнять	
				векторные операции	
				и логические	
				фильтрации	
				- Использовать	
				встроенные функции	
				numpy для генерации	
				и обработки данных	
3.				Знать:	5
				- Основные элементы	
				графика: фигура, оси,	
				подписи, легенда	
				- Команды для	
				построения графиков	
				(`plot`, bar, hist,	
				'scatter')	
				- Параметры	
				стилизации	
				графиков: цвета,	
				маркеры, линии	
	-	базовый			
				Уметь:	
				- Строить линейные	
				графики, столбчатые	
				диаграммы,	
				гистограммы	
				- Настраивать	
				подписи, легенды,	
				сетку и заголовки	
				- Сохранять графики	
				в файл в различных	
			Библиотека	форматах (PNG, PDF	
			matplotlib.	и др.)	
4.				Знать:	5
				- Понятие и цели	
				одномерного анализа	
				(распределение,	
				мода, медиана,	
	-	базовый		размах)	
				- Назначение	
				гистограммы и	
			Анализ и	графика плотности	
			визуализация	- Типы	
			данных на Python.	распределений	

				Уметь: - Строить графики функций и гистограммы по массиву данных - Интерпретировать распределения по графикам - Определять характер распределения	
5.	На выбор 5 или 6	повышенный	Введение в SQL. Примеры в Postgresql	Умение формировать и оптимизировать SQL-запросы, знание основ работы с базами данных. Практическое применение SQL в PostgreSQL.	24
6.	На выбор 5 или 6		Библиотека питру.	Умение использовать библиотеку NumPy для создания и преобразования массивов, выполнения арифметических операций и генерации случайных чисел. Умение применять Pandas для работы с табличными данными: создание и модификация DataFrame, фильтрация, группировка, обработка пропущенных значений и объединение данных. Умение использовать Мatplotlib для визуализации данных: построение графиков,	24
		повышенный		настройка осей и	

				оформления.	
7.			Исчисление	Умение применять	6
			вероятностей и	знания основ	
			элементы	исчисления	
	-		комбинаторики	вероятностей и	
				элементов	
		повышенный		комбинаторики.	
			Одномерный анализ	Умение	10
			данных. График	визуализировать	
			функции.	данные с помощью	
			Гистограммы.	графиков и	
			Распределения	гистограмм,	
				интерпретировать	
				полученные	
				результаты. Знание	
				основных типов	
8.	-			графиков и их	
				применения для	
				анализа распределения	
				данных. Понимание	
				распределений данных	
				(например,	
				нормальное	
				распределение,	
				биномиальное	
		повышенный		распределение и т.п.)	
		Сум	ма баллов:		60

Приложение 2

Демонстрационный вариант конкурсных заданий *практического* этапа Конкурса .№1

Пример состава задания базового уровня сложности практического этапа Конкурса.

1.

Был создан датафрейм с оценками по предметам:

```
import pandas as pd data = {'Математика': [4, 5, 3], 'Информатика': [5, 4, 4]} df = pd.DataFrame(data)
```

Необходимо вычислить среднюю оценку по каждому предмету, в ответе укажите соответствующую команду.

Ответ: df.mean()

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

2.

Необходимо создать массив из 5 одинаковых значений 7. В ответе напишите соответствующую команду. Способ решения должен быть корректным с помощью NumPy.

Ответ: np.full(5, 7), либо любой другой корректный способ решения.

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

3.

Необходимо построить граф	рик зависимости темпе	ратуры от времен	и. Массивы time,
temperature заданы. Напиши	ите команду, учитывая,	, что она должна	быть в формате
plt(,).			

Ответ: plt.plot(time, temperature)

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

4.

Необходимо загрузить CSV-файл inf.csv в DataFrame для анализа. Напишите команду, учитывая, что она должна быть в формате pd.___(___)

Ответ: pd.read_csv('inf.csv')

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

Демонстрационный вариант конкурсных заданий практического этапа Конкурса

Пример состава задания повышенного уровня сложности практического этапа Конкурса.

Задача 5.

Библиотека готовится к ежегодному фестивалю «Библиофест», где планируется наградить самых активных авторов и читателей, а также провести выставку популярных книг. Вам, как аналитику, поручили собрать ключевые данные из PostgreSQL-базы библиотеки. Таблицы базы данных:

- **authors** (id, name, country) авторы.
- books (id, title, year, author id, pages) книги.
- readers (id, name, email, registration date) читатели.
- **book_loans** (id, book_id, reader_id, loan date, return_date) записи о выдаче книг.

Для этого сформируйте необходимые запросы к базе данных для составления списков для следующих номинаций.

- 1. **Номинация** «**Мастер слова**». Для награждения авторов, чьи книги наиболее объемны и современны: вывести имя автора и общее количество страниц его книг, изданных после 2015 года. Сортировать по убыванию страниц.
- 2. **Номинация** «**Книжный фанат**». Читатели, претендующие на звание «Самый активный»: найти тех, кто брал книги чаще 2 раз в феврале 2023 года. Вывести их имя, email и количество выдач.

В качестве ответа необходимо предоставить два sql-запроса.

Запишите свое решение в файл: задача 1.txt.

Критерии оценивания:

Максимальная оценка за каждый запрос составляет 12 балла. Общее количество баллов за задание -24.

Корректный синтаксис		1
Запрос выполняется без ошибок в PostgreSQL	1	

Есть незначительные ошибки (например, пропущена запятая, неверный алиас), но запрос работает после исправления	0.5	
Синтаксические ошибки, из-за которых запрос не выполняется (например, неправильное использование ключевых слов, некорректные имена таблиц)	0	
Логика		7
Результат полностью соответствует условию (учтены фильтры, сортировка, группировка, исключены дубли)	7	
Частичные ошибки в логике (например, не учтена сортировка по убыванию, пропущен год в фильтре)	3	
Логика нарушена (например, вывод книг, изданных до 2015 года вместо после)	0	
Оптимальность и дополнительные требования		4
Использованы оптимальные методы (например, JOIN вместо подзапросов).		
Выполнены все дополнительные условия.	4	
Нет избыточных операций (например, SELECT * вместо конкретных колонок).		
Частично выполнено (например, NOT EXISTS заменен на LEFT JOIN, но результат верный)	2	
Грубые нарушения (например, запрос с CROSS JOIN, ведущим к декартову произведению)	0	
итого		12

Задача 6.

Вы — аналитик данных в розничной сети. Вам предоставили файл sales_data.csv с историей продаж за 6 месяцев

Цель: выявить категории товаров с нестабильной динамикой и предложить меры по стабилизации продаж.

Файл sales data.csv, содержащий помесячные данные о продажах. Формат таблицы:

- product id идентификационный номер продукта (целое число)
- month месяц в формате YYYY-MM (строка или дата)
- sales объём продаж (число, может быть ноль)
- category категории продуктов (строка)

Требуется

- 1. Загрузить данные из файла sales_data.csv файл должен находиться в том же проекте, что и программа.
 - Используйте pd.to datetime(), sort values()
 - Решение можно оформить так: загрузка \to преобразование месяца \to сортировка.

- 2. Для каждой товарной позиции (product_id) определить, изменились ли продажи по сравнению с предыдущим месяцем: Используйте groupby() и diff() для вычисления разницы.
 - Создайте новый столбец sales changed, который принимает значение:
 - i. True, если продажи изменились
 - іі. False, если продажи не изменились
 - Для расчёта используйте diff().ne(0).
- 3. Итоговая таблица должна содержать следующие столбцы (в указанном порядке):
 - o product id
 - o month
 - o sales
 - o category
 - o sales change
 - Приведите дату обратно к формату 'YYYY-MM' через .dt.strftime()
 - Проверьте, что порядок и формат соответствуют.
- 4. Вывести первые 10 строк итоговой таблицы.
- 5. Для каждого сочетания category и month рассчитать медианные sales
- 6. Построить линейный график, где:
 - Oсь X month
 - Ось Y медианные sales
 - Каждая линия отдельная категория
- 7. Используйте .median(), .reset index(), matplotlib.pyplot (plot(), xticks(), legend() и т. д.)
- 8. Сохранить изображение как sales lineplot.png

Запишите свое решение в файл: task 2.py.

Документацию по приведенным методам можно получить с помощью функции **help()**.

Критерии оценивания:

Максимальная количество баллов за задание – 24.

Загрузка и предобработка данных		4
Данные загружены корректно Проведена проверка на пропуски (если требуется)	ļ	

Загрузка выполнена, но не учтены особенности данных (кодировка, разделители)	2	
Данные загружены с ошибками (например, неверный путь к файлу)	1	
Данные не загружены	0	
Расчет показателей		10
Все метрики (динамика, средние, медианы и т.д.) рассчитаны верно Учтены краевые случаи (деление на ноль, отрицательные значения)	10	
Метрики есть, но есть ошибки в формулах или группировках	5	
Расчеты проведены, но не соответствуют условию задачи	1	
Показатели не рассчитаны	0	
Добавление новых столбцов		4
Столбцы созданы через векторные операции (без циклов) Категоризация выполнена по условиям задачи	4	
Логика верна, но код не оптимален (например, использование apply)	2	
Столбцы добавлены, но с ошибками в условиях	1	
Новые столбцы отсутствуют	0	
Визуализация		5
Построен график требуемого типа (heatmap, line, bar и т.д.).		
Наличие подписей осей, заголовка, легенды.	5	
График сохранен в файл		
График построен, но: Неверный тип визуализации, Отсутствуют подписи/легенда,	2	
Есть график, но не соответствует данным	1	
Визуализация отсутствует	0	
Оформление кода и вывод	•	1
Код читаем, есть комментарии (где необходимо). Результаты выведены в требуемом формате (например, print или to_markdown).	1	
Код не структурирован, вывод отсутствует	0	
итого	<u> </u>	24

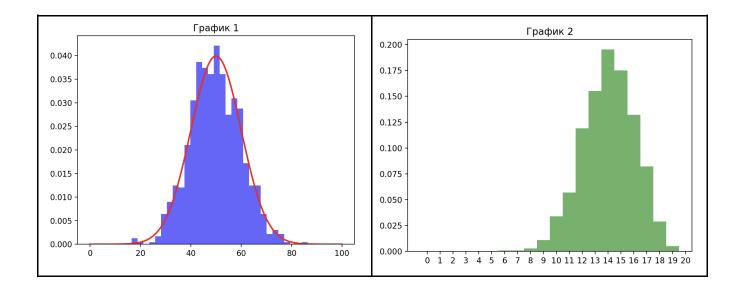
Задача 7.

В школе проводится лотерея для сбора средств на благотворительность. Участники покупают билеты, каждый из которых содержит уникальный номер из 5 цифр (включительно от 00000 до 99999). Призы разыгрываются по следующим правилам:

- 1. **Главный приз**: номер содержит ровно три одинаковые цифры (например, 12121, 33305).
- 2. **Дополнительный приз**: номер является «палиндромом» (читается одинаково слева направо и справа налево, например, 12321, 55055).

Какова вероятность, что случайно выбранный номер одновременно претендует на главный приз и является палиндромом?

Запишите свое решение в файл: задача_3.txt. Ваше решение должно основываться на математических вычислениях - использование сторонних программ не допускается.


Критерии оценивания:

Максимальная количество баллов за задание – 6.

Логичность и отсутствие ошибок		3
Последовательность рассуждений, пояснение каждого шага	1	
Отсутствие арифметических, логических ошибок или противоречий	2	
Разделение на случаи (например, центральная цифра совпадает с первой/второй)		2
Выявление особенностей объектов, соответствующих условию (например, палиндромы, номера с повторяющимися цифрами)	1	
Правильное применение комбинаторных методов (правила умножения, сочетания, размещения)	1	
Предоставлен верный ответ		
итого		6

Задача 8.

- 1. Определите тип распределения для каждого графика.
- 2. Назовите параметры распределений:
 - ο Для Графика 1: μ и σ.
 - о Для Графика 2: число испытаний (n) и вероятность успеха (p).
- 3. Объясните, по каким визуальным признакам вы определили тип распределения.

Запишите свое решение в файл: задача 4.txt

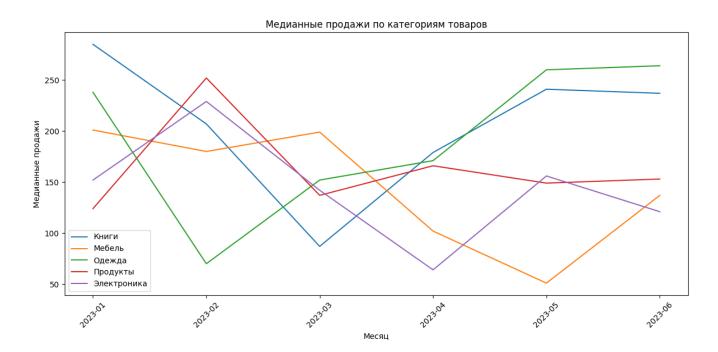
Критерии оценивания:

Максимальная оценка за каждый график составляет 5 баллов. Общее количество баллов за задание -10.

Определение типа распределения		
Правильно указан тип распределения	1	
Тип распределения указан с неуверенностью или допущена несущественная ошибка (например, «похоже на нормальное» без точного названия)	0.5	
Тип распределения указан неверно или не указан вовсе		
Указание параметров распределения		
Все параметры корректны и соответствуют графику		
Указан только один параметр правильно, или оба с частичной точностью	1	
Параметры не указаны или указаны с грубыми ошибками	0	

Обоснование выбора типа распределения		
Обоснование подробное, логичное и основано на анализе формы графика (симметрия, пик, хвосты, размах и т.д.)	2	
Обоснование частично верное или не до конца раскрыто (общие фразы, без привязки к графику)		
Обоснование отсутствует или ошибочно 0		
ИТОГО		5

Пример решения задания повышенного уровня сложности практического этапа Конкурса.


Задача 5.

```
1.
SELECT a.name AS author_name, SUM(b.pages) AS total_pages
FROM authors a
 JOIN books b ON a.id = b.author_id
WHERE b.year > 2015
GROUP BY a.id, a.name
ORDER BY total_pages DESC;
2.
SELECT r.name, r.email, COUNT(bl.id) AS loan_count
FROM readers r
 JOIN book_loans bl ON r.id = bl.reader_id
WHERE bl.loan_date >= '2023-02-01' AND bl.loan_date < '2023-03-01'
GROUP BY r.id, r.name, r.email
HAVING COUNT(bl.id) > 2;
Задача 6.
 import pandas as pd
 import matplotlib.pyplot as plt
 df = pd.read_csv('sales_data.csv')
 df['month'] = pd.to_datetime(df['month'])
 df = df.sort_values(['product_id', 'month'])
 df['sales_change'] = df.groupby('product_id')['sales'].diff().ne(0)
 df['month'] = df['month'].dt.strftime('%Y-%m')
 df = df[['product_id', 'month', 'sales', 'category', 'sales_change']]
 print(df.head(10))
 median_sales = df.groupby(['category', 'month'])['sales'].median().reset_index()
 plt.figure(figsize=(12, 6))
 for category in median_sales['category'].unique():
    subset = median_sales[median_sales['category'] == category]
    plt.plot(subset['month'], subset['sales'], label=category)
 plt.xticks(rotation=45)
 plt.xlabel('Месяц')
 plt.ylabel('Медианные продажи')
 plt.title('Медианные продажи по категориям товаров')
 plt.legend()
 plt.tight_layout()
```

plt.savefig('sales_lineplot.png')

	product_id	month	sales	category	sales_change
0	1	2023-01	152	Электроника	True
1	2	2023-01	238	Одежда	True
2	3	2023-01	124	Продукты	True
3	4	2023-01	201	Мебель	True
4	5	2023-01	285	Книги	True
5	1	2023-02	229	Электроника	True
6	2	2023-02	70	Одежда	True
7	3	2023-02	252	Продукты	True
8	4	2023-02	180	Мебель	True
9	5	2023-02	207	Книги	True

Задача 7.

1. Общее количество номеров

Каждый номер — это 5-значное число от 00000 до 99999: $N_{total}\,=\,10^5$

2. Структура пятизначного палиндрома.

Палиндром имеет вид: abcba, где a, b, c принадлежат множеству $\{0,1,\ldots,9\}$.

В номере abcba цифры а и b встречаются по два раза, с — один раз.

Чтобы было ровно три одинаковые цифры, возможны два случая:

Случай 1: a = c, a != b

Кол-во вариантов выбора а - 10

Кол-во вариантов выбора: b - 9

Кол-во возможных комбинаций: $10 \times 9 = 90$

Рассуждения для Случая 2: b = c, a != b аналогичны

Итого всего количество билетов, удовлетворяющих условиям: 90 + 90 = 180

3. Расчет вероятности: $\frac{180}{10^5} * 100\% = 0.18\%$

Ответ: 0.18%

Задача 8.

- 1. График 1 нормальное распределение. График 2 биномиальное распределение.
- 2. $\mu \approx 50$ и $\sigma \approx \frac{|40 60|}{2} \approx 10$.

$$n = 20, p = \frac{\mu}{n} \approx \frac{14}{20} \approx 0.7$$
 (разрешается погрешность в ± 0.2)

Допустимые погрешности при учете ответа:

 μ : $\pm 5\%$ от истинного значения (например, если $\mu = 50$, допустим ответ 48–52).

 σ : ± 10 –15% (например, $\sigma = 10 \rightarrow$ ответ 9–11)

n: точное значение (например, $n = 20 \rightarrow$ только 20, так как это целое число).

 $p: \pm 0.05$ (например, $p = 0.7 \rightarrow$ ответ 0.65-0.75)

3. График 1: симметричная колоколообразная форма, соответствует нормальному распределению.

График 2: дискретные значения (целые числа от 0 до 20), пик около 14 ($n \cdot p = 14$)

Приложение 3.

Демонстрационный вариант конкурсных заданий *практического* этапа Конкурса №2

Пример состава задания базового уровня сложности практического этапа Конкурса.

1.

Необходимо выбрать из DataFrame только те строки, где в столбце "Баллы" значение больше 80, используя метод query:

```
import pandas as pd df = pd.DataFrame({'Имя': ['Аня', 'Борис', 'Вика'], 'Баллы': [75, 90, 85]})
```

В ответе укажите соответствующую команду.

Ответ: df.query('Баллы > 80')

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

2.

Создайте массив из 100 случайных чисел от 0 до 10 с равномерным распределением и округлите до 2 знаков, учитывая, что ответ должен быть записан в виде $np._(np.random._(), _)$.

Oтвет: np.round(np.random.uniform(0, 10, 100), 2)

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

٦,	

Постройте гистограмму из массива data с 20 равными интервалами и отобразите сетку. Ответ должен быть записан в виде plt.___(__, ___); plt.___(). Ответ: plt.hist(data, bins=20); plt.grid()

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

4.

Постройте график плотности распределения (kernel density estimation) для столбца 'score' датафрейма df. В ответ впишите верную команду.

Ответ: df['score'].plot.kde()

Критерии оценивания: если задание решено верно, участник получает максимальный балл, иначе 0 баллов.

Описание хода практической части в случае очной дистанционной формы проведения этапа Конкурса: *категорически нельзя* (ведет к отклонению работы): веб-поиском, методическими рекомендациями по направлениям Конкурса. Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив проктора на камеру. Мероприятие не продлевается на время отсутствия участника.

Приложение 4

Демонстрационный вариант конкурсных заданий практического этапа Конкурса

Пример состава задания повышенного уровня сложности практического этапа Конкурса.

Задача 5.

Образовательная онлайн-платформа анализирует активность пользователей и популярность курсов для улучшения качества обучения и обновления контента. Вам, как аналитику, поручили подготовить выборки из базы PostgreSQL.

Структура базы данных:

- instructors (id, name, expertise) преподаватели.
- courses (id, title, year, instructor id, duration hours) курсы.
- students (id, name, email, registration date) студенты.
- course_enrollments (id, course_id, student_id, enrollment_date, completion_date) записи о прохождении курсов.

Подготовьте SQL-запросы к базе данных для следующих целей:

1. Анализ активности преподавателей

Вывести имена преподавателей и общее количество часов всех их курсов, выпущенных после 2020 года. Отсортировать по убыванию суммарной продолжительности.

2. Идентификация вовлеченных студентов

Найти студентов, которые записывались на курсы более 3 раз за март 2023 года. Вывести имя, email и общее количество записей в этом месяце.

В качестве ответа необходимо предоставить два sql-запроса.

Запишите свое решение в файл: задача 1.txt.

Критерии оценивания:

Максимальная оценка за каждый запрос составляет 12 балла. Общее количество баллов за задание -24.

Корректный синтаксис		1
Запрос выполняется без ошибок в PostgreSQL	1	
Есть незначительные ошибки (например, пропущена запятая, неверный алиас), но запрос работает после исправления	0. 5	
Синтаксические ошибки, из-за которых запрос не выполняется (например, неправильное использование ключевых слов, некорректные имена таблиц)	0	
Логика		7
Результат полностью соответствует условию (учтены фильтры, сортировка, группировка, исключены дубли)	7	
Частичные ошибки в логике (например, не учтена сортировка по убыванию, пропущен год в фильтре)	3	
Логика нарушена (например, вывод книг, изданных до 2015 года вместо после)	0	
Оптимальность и дополнительные требования		4
Использованы оптимальные методы (например, JOIN вместо подзапросов). Выполнены все дополнительные условия. Нет избыточных операций (например, SELECT * вместо конкретных колонок).	4	
Частично выполнено (например, NOT EXISTS заменен на LEFT JOIN, но результат верный)	2	
Грубые нарушения (например, запрос с CROSS JOIN, ведущим к декартову произведению)	0	
итого		12

Задача 6.

Вы — аналитик клиентского опыта в крупном интернет-магазине. Вам предоставили файл reviews_data.csv с историей отзывов клиентов за последние 12 месяцев.

Цель: оценить изменение клиентской удовлетворенности по продуктам и выявить группы с ухудшением восприятия.

Файл: reviews data.csv, формат таблицы:

Колонка	Описание
product_id	Идентификатор продукта (целое число)
review_date	Дата отзыва (в формате YYYY-MM-DD)
rating	Оценка (целое число от 1 до 5)

sentiment	Категория тональности отзыва (positive/negative/neutral)
department	Отдел, к которому относится товар (строка)

Требуется:

- 1. Загрузить данные из reviews_data.csv файл должен быть в том же проекте, что и программа.
- 2. Преобразовать даты в формат месяца (YYYY-MM) и сгруппировать данные по:
 - o product id
 - o review month (новый столбец, извлечённый из review date)
 - Используйте pd.to_datetime(), .dt.to_period('M') или .dt.strftime('%Y-%m')
- 3. Для каждой группы рассчитать среднюю оценку (avg rating) за месяц.
 - Используйте groupby(), agg() с mean
- 4. Сформировать итоговую таблицу со столбцами (в указанном порядке):
 - o product id
 - o review month
 - o avg rating
 - department
- 5. Отсортировать по review month по возрастанию. Вывести первые 10 строк.
- 6. Построить гистограмму распределения клиентских оценок rating
 - i. Ось X rating
 - іі. Ось Ү количество отзывов, поставивших соответствующую оценку
 - Сохранить как rating gist.png
 - Используйте matplotlib.pyplot (plot(), xticks(), legend(), hist() и т. д.)
 - Добавить подписи осей и заголовок графика.

Документацию по приведенным методам можно получить с помощью функции *help()*.

Критерии оценивания:

Максимальная количество баллов за задание – 24.

ИТОГО		24
Код не структурирован, вывод отсутствует	0	
Код читаем, есть комментарии (где необходимо). Результаты выведены в требуемом формате (например, print или to_markdown).	1	
Оформление кода и вывод		1
Визуализация отсутствует	0	1
Есть график, но не соответствует данным	1	
Отсутствуют подписи/легенда,	1	
Неверный тип визуализации,	2	
График построен, но:		
График сохранен в файл		L
Наличие подписей осей, заголовка, легенды.	5	
Построен график требуемого типа (heatmap, line, bar и т.д.).		
Визуализация		5
Новые столбцы отсутствуют	0	
Столбцы добавлены, но с ошибками в условиях	1	
Погика верна, но код не оптимален (например, использование apply)	2	
Столбцы созданы через векторные операции (без циклов) Категоризация выполнена по условиям задачи	4	
Добавление новых столбцов		4
Показатели не рассчитаны	0	
Расчеты проведены, но не соответствуют условию задачи	1	
Метрики есть, но есть ошибки в формулах или группировках	5	
Все метрики (динамика, средние, медианы и т.д.) рассчитаны верно Учтены краевые случаи (деление на ноль, отрицательные значения)	10	
Расчет показателей		10
Данные не загружены	0	
Данные загружены с ошибками (например, неверный путь к файлу)	1	
Загрузка выполнена, но не учтены особенности данных (кодировка, разделители)	2	
Цанные загружены корректноПроведена проверка на пропуски (если требуется)	4	

Задача 7.

Школьная столовая планирует меню на неделю (5 учебных дней). В распоряжении поваров — 8 разных горячих блюд. Каждый день подают одно горячее блюдо, и каждое блюдо можно использовать не более одного раза в неделю.

Но чтобы не было скучно, вводятся два условия:

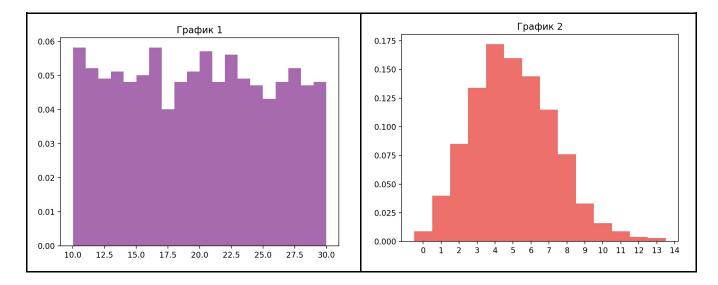
- Блюдо понедельника всегда овощное рагу.
- В течение недели **ровно одно** блюдо должно начинаться с буквы "**K**" (например, «Котлета»).

Вот список блюд, которые есть в распоряжении поваров:

- 1. Котлета по-домашнему
- 2. Каша гречневая с подливкой
- 3. Плов с курицей
- 4. Макароны по-флотски
- 5. Овощное рагу
- 6. Рыбные тефтели
- 7. Запеканка картофельная
- 8. Суп гороховый

Сколько различных вариантов меню можно составить на неделю?

Запишите свое решение в файл: задача_2.txt. Ваше решение должно основываться на математических вычислениях - использование сторонних программ не допускается.


Критерии оценивания:

Максимальная количество баллов за задание – 6.

Іогичность и отсутствие ошибок		3
Последовательность рассуждений, пояснение каждого шага	1	
Отсутствие арифметических, логических ошибок или противоречий	2	
Разделение на случаи (например, центральная цифра совпадает с первой/второй)		2
Выявление особенностей объектов, соответствующих условию (например, палиндромы, номера с повторяющимися цифрами)	1	
Правильное применение комбинаторных методов (правила умножения, сочетания, размещения)	1	
Предоставлен верный ответ		1
итого		6

Задача 8.

- 1. Определите тип распределения для каждого графика.
- 2. Оцените параметры распределений:
 - О Для Графика 1: границы интервала (**a** и **b**).
 - О Для Графика 2: параметр λ (лямбда).
- 3. Объясните, по каким визуальным признакам вы определили тип распределения.

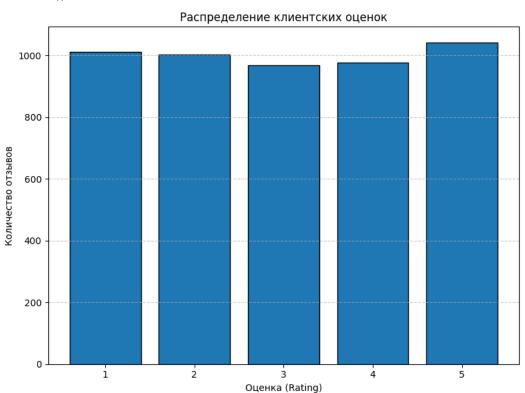
Критерии оценивания:

Максимальная оценка за каждый график составляет 5 балла. Общее количество баллов за задание -10.

Определение типа распределения		1
Правильно указан тип распределения	1	
ип распределения указан с неуверенностью или допущена несущественная ошибка (например, похоже на нормальное» без точного названия)		
Тип распределения указан неверно или не указан вовсе	0	
Указание параметров распределения	ределения 2	
Все параметры корректны и соответствуют графику	2	
Указан только один параметр правильно, или оба с частичной точностью	1	
Параметры не указаны или указаны с грубыми ошибками	0	
Обоснование выбора типа распределения		2
Обоснование подробное, логичное и основано на анализе формы графика (симметрия, пик, хвосты, размах и т.д.)	2	

Обоснование частично верное или не до конца раскрыто (общие фразы, без привязки к графику)	1	
Обоснование отсутствует или ошибочно	0	
ИТОГО		5

Пример решения задания повышенного уровня сложности практического этапа Конкурса.


Задача 5.

```
1.
SELECT
     i.name AS instructor_name,
     SUM(c.duration_hours) AS total_hours
FROM
     instructors i
JOIN
     courses c ON i.id = c.instructor_id
WHERE
     c.year > 2020
GROUP BY
    i.name
ORDER BY
    total_hours DESC;
2.
SELECT
    s.name,
     s.email,
     COUNT(*) AS enrollment_count
FROM
     students s
JOIN
     course_enrollments ce ON s.id = ce.student_id
WHERE
     ce.enrollment_date >= '2023-03-01' AND ce.enrollment_date < '2023-04-01'</pre>
GROUP BY
     s.name, s.email
HAVING
     COUNT(*) > 3;
```


Задача 6.

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv("reviews data.csv")
df['review date'] = pd.to datetime(df['review date'])
df['review_month'] = df['review_date'].dt.to_period('M').astype(str) # Moжно также
.dt.strftime('%Y-%m')
grouped = df.groupby(['product_id', 'review_month', 'department']).agg(avg_rating=('rating',
'mean')).reset index()
final_df = grouped[['product_id', 'review_month', 'avg_rating', 'department']]
final df = final df.sort values(by='review month')
print(final df.head(10))
plt.figure(figsize=(8, 6))
plt.hist(df['rating'], bins=range(1, 7), align='left', edgecolor='black', rwidth=0.8)
plt.xlabel('Оценка (Rating)')
plt.ylabel('Количество отзывов')
plt.title('Распределение клиентских оценок')
plt.xticks(range(1, 6))
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight layout()
plt.savefig('rating gist.png')
plt.show()
```


department	avg_rating	review_month	product_id	
Beauty	3.0	2024-01	1000	0
Electronics	4.0	2024-01	1009	430
Clothing	2.0	2024-01	1009	429
Beauty	1.5	2024-01	1009	428
Clothing	3.0	2024-01	1036	1725
Electronics	1.0	2024-01	1036	1726
Home	3.0	2024-01	1036	1727
Sports	4.0	2024-01	1036	1728
Clothing	5.0	2024-01	1037	1773
Electronics	1.5	2024-01	1037	1774

Задача 7.

- 1. Из 8 блюд два начинаются на "К" выбираем одно: C(2,1) = 2.
- 2. Из 5 не-К-блюд (кроме Овощного рагу и выбранного "К") выбрать 3: C(5, 3) = 10.
- 3. Тогда кол-во способов выбрать 4 блюда: 2 * 10 = 20
- 4. Эти 4 блюда (1 "К"-блюдо и 3 не-К) нужно переставить по 4 дням Вт, Ср, Чт, Пт.

Все блюда разные. Размещаем: 4! = 24 способов

5. Общее число вариантов: $20 \times 24 = 480$.

Ответ: 480

Задача 8.

- 1. График 1 равномерное, График 2 Пуассона
- 2. График 1: $\mathbf{a} \approx \mathbf{10}$, $\mathbf{b} \approx \mathbf{30}$ (значения равномерно распределены от 10 до 30).

График 2: $\lambda \approx 5$ (пик около 5, среднее = λ)

Допустимые погрешности:

а и b: ± 2 –3% от диапазона (например, данные от 10 до 30 \rightarrow а \approx 10 \pm 0.5, b \approx 30 \pm 0.5).

 λ : ± 1 –2 единицы (например, $\lambda = 5 \rightarrow$ ответ 4–6)

3. График 1: гистограмма плоская, все значения в диапазоне [10, 30] встречаются примерно одинаково часто.

График 2: дискретные значения, пик около 5, асимметрия вправо (характерно для Пуассона).

