Номинация «Инженерный класс» Направление «Курчатовские классы» Этап Практический

Вариант 1

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр—милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлоридсеребряный электрод сравнения, стаканчики на 50 мл, пипетки Мора на 15,0 мл, промывалка, пинцет.

Peaкmuвы: 0,005 моль/л растворы $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$, концентрированная HNO_3 .

Приложение 1 План конкурсных материалов для проведения *практического* этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
"		Кейс №1		•
1.1	базовый	Электрохимическая система (гальванический элемент)	Знать понятия электрохимическая система, электрод, электрод сравнения, электродвижущая сила, потенциалопределяющие ионы, диффузионный потенциал, солевой мостик. Знать методику составления электрохимических систем (гальванических элементов).	10
1.2	повышенный	Электродвижущая сила гальванического элемента с ОВ электродами	Электродные процессы, Уравнение Нернста для ЭДС, константа равновесия электрохимического процесса, протекающего в системе.	20
1.3	высокий	Электродный потенциал исследуемой ОВ системы: экспериментальный, расчетный и справочный	Электродные процессы, уравнение Нернста для потенциала ОВ электрода, активность. Уравнение Дебая-Хюккеля (предельный закон). Расчет ОВ потенциала по уравнению Нернста.	30
		1	Сумма баллов:	60

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-}]$ Pt

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} | Pt$ и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей ОВ пару $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ в стаканах на 50 мл смешивают по 15 мл 0,005 моль/л растворов $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$. Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

$$t = \underline{\hspace{1cm}}^{\circ}C$$

Номер образца	$E_{\Gamma o 9, m 9 KC \Pi}$. В	E _{Ag AgCl KC1} , (ЭСр- 10103/3,5)* B	E _{ОВ эксп.} , В	<i>Er-э0</i> , В	Ка
1					
2		0,208			
3					

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = E_+ E_- .
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента $E^0_{\Gamma-3}$ для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_i$$
 – заряд иона, $I=\frac{1}{2}\sum m_i \ {z_i}^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого ОВ электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacч}$ по экспериментальному значению $E_{OB\ эксп.}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	коэффициенты активности (ү _і), для ионов		активность ионов (a_{mi})		Е _{ОВ эксп} В	Е ⁰ ОВ расч.,
Соризди	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻		В
1						
2						
3						

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала $E^0_{OB\ cnpaB}$ для исследуемого OB электрода и значение стандартного электродного потенциала E^0_{OB} этого же OB электрода, рассчитанного по экспериментальным значениям $E_{OB\ эксп.}$ и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

 $_{\Delta}=|(< E_{
m pac-u.}^0>-E_{
m cправ.}^0)|\cdot 100/E_{
m cправ.}^0$, Для расчета процента отклонения используют среднее значение потенциала ($< E_{
m pac-u.}^0>$).

Объясняют причину расхождения значений стандартного потенциала справочного E^0_{OB} и E^0_{OB} , рассчитанного по экспериментальным данным.

Таблица 3

ОВ электрод	E ⁰ ОВ справ. , В	E ⁰ ОВ расч. , В	% расхождения E ⁰ и ОВ справ E ⁰ ОВ расч.
$[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} Pt$			

Кейс №2

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

- 1. Слайсер: PrusaSlicer 2.6.1;
- 2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения *практического* этапа Конкурса Кейс №2

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Кейс№2

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 58;

 $\mathbf{F} = 102.$

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Prusa Slicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

Разместите 3D модель таким образом, чтобы создалось наименьшее количество поддержек (определяется по количеству материала). - 10 баллов.

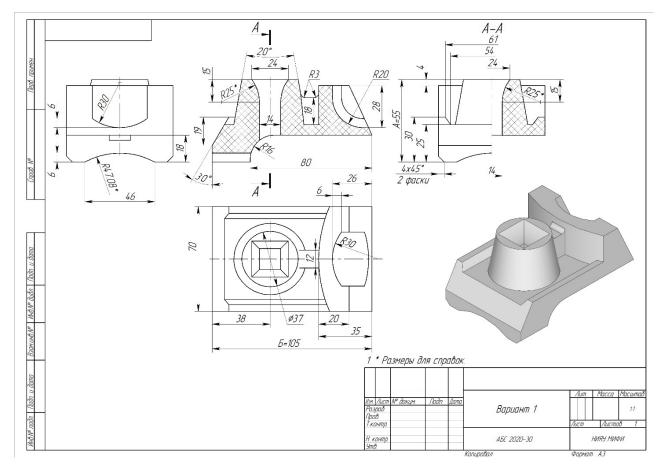


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Параметр	Значение
Высота первого слоя	0.3мм
Высота слоя	0.2мм
Ширина линии	0.4 мм
Ширина линий заполнения	0.6 мм
Ширина линии первого слоя	0.6 мм
Толщина стенки	3 линии
Горизонтальные оболочки	5 / 4
сверху / снизу, слоев	
Плотность заполнения	25%
Шаблон заполнения	Гиройд
Поддержки:	Автоматические, включены везде,
	аккуратные, печатать под мостами.
Угол нависания	40
Плотность поддержки	2,5 мм
Скорость печати	60 мм/с
Скорость печати первого слоя	20 мм/с
Шаблон поддержек	Прямолинейный

Ссылки на рекомендуемое программное обеспечение

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»:

https://www.prusa3d.com/page/prusaslicer_424/

Вариант 2

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр—милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлорсеребряный электрод сравнения, стеклянный электрод, стаканчики на 50 мл, пипетки Мора на 25,0, 20,0, 10,0 и 5 мл. Пипетка (тип 2-1-2-1) градуированная на 1,0 мл (возможно применение дозатора пипеточного), промывалка, пинцет.

Peaктивы: 0,005 моль/л раствор $K_2Cr_2O_7$ и 0,001 моль/л раствор $Cr_2(SO_4)_3$, 0,02 моль/л раствор H_2SO_4 , концентрированная HNO_3 .

Приложение 1 План конкурсных материалов для проведения *практического* этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл			
Кейс №1							
1.1	базовый	Электрохимическая система (гальванический элемент)	Знать понятия электрохимическая система, электрод, электрод сравнения, электрод вижущая сила, потенциалопределяющие ионы, диффузионный потенциал, солевой мостик. Знать методику составления электрохимических систем (гальванических элементов).	10			
1.2	повышенный	Электродвижущая сила гальванического элемента с ОВ электродами	Электродные процессы, Уравнение Нернста для ЭДС, константа равновесия электрохимического процесса, протекающего в системе.	20			
1.3	высокий	Электродный потенциал исследуемой ОВ системы: экспериментальный, расчетный и справочный	Электродные процессы, уравнение Нернста для потенциала ОВ электрода, активность. Уравнение Дебая-Хюккеля (предельный закон). Расчет ОВ потенциала по уравнению Нернста.	30			
		<u>.</u>	Сумма баллов:	60			

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $Cr_2O_7^{2-}$, $Cr^{3+}H^+|Pt$

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод $Cr_2O_7^{2-}$, Cr^{3+} $H^+|$ Pt и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей ОВ пару $Cr_2O_7^{2-}$, Cr^{3+} в стаканах на 50 мл смешивают 25 мл 0,005 моль/л раствора $K_2Cr_2O_7$ и 5 мл 0,001 моль/л раствора $Cr_2(SO_4)_3$, добавляют 0,3 мл 0,02 моль/л раствора H_2SO_4 при помощи градуированной пипетки на 1 мл и измеряют рН. (Можно использовать дозаторы пипеточные). Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

$$t = \underline{\hspace{1cm}}^{\circ}C$$

Номер образца	рН	a(H+)	$E_{\Gamma-9,9$ ксп. В	E _{Ag AgCl KC1} (ЭСр- 10103/3,5)* В	Е _{ОВ эксп.} , В	<i>Ег-э</i> В	Ка
1							
2				0,208			
3							

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = E_+ E_-
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента E^0_{r-9} для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_{\rm i}$$
 – заряд иона, $I=\frac{1}{2}\sum m_i \ {z_i}^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого ОВ электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacч}$ по экспериментальному значению $E_{\ OB\ pacч}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	a(H+)	коэффиц активнос для ио ${\rm Cr_2O_7}^{2-}$	ти (γі),	активно ионо (<i>a_{mi}</i>) Сг ₂ О ₇ ²⁻	Е _{ОВ эксп} В	<i>E</i> ⁰ ОВ расч., В
1						
2						
3						

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала E^0 ов справ для исследуемого OB электрода и значение стандартного электродного потенциала E^0_{OB} этого же OB электрода, рассчитанного по экспериментальным значениям E_{OB} эксп.. и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

$$\Delta = I(< E^0 > -E^0)|\cdot 100/E^0$$
, %. Для расчета процента отклонения используют среднее расч. справ.

значение потенциала ($< E_{\rm pacy}^0 >$.

Объясняют причину расхождения значений стандартного потенциала справочного E_{OB}^0 и E_{OB}^0 , рассчитанного по экспериментальным данным.

Таблица 3

ОВ электрод	E ⁰ ОВ справ., В	E ⁰ ОВ расч. , В	% расхождения E ⁰ OB справ. E ⁰ OB расч.
$Cr_2O_7^{2-}, Cr^{3+} H^+ Pt$			

Кейс №2

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

1. Слайсер: PrusaSlicer 2.6.1;

2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения практического этапа Конкурса Кейс №2

№ задания	Уровень	Уникальные	Контролируемые	Балл
	сложности	кодификаторы Конкурса	требования к проверяемым умениям	
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Кейс№2

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 58;

 $\mathbf{F} = 102.$

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Prusa Slicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

Разместите 3D модель таким образом, чтобы создалось наименьшее количество поддержек (определяется по количеству материала). - 10 баллов.

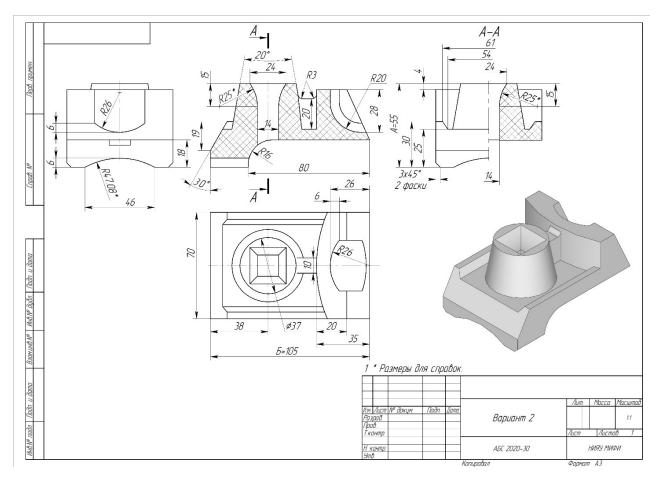


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Параметр	Значение
Высота первого слоя	0.3мм
Высота слоя	0.2мм
Ширина линии	0.4 мм
Ширина линий заполнения	0.6 мм
Ширина линии первого слоя	0.6 мм
Толщина стенки	3 линии
Горизонтальные оболочки	5 / 4
сверху / снизу, слоев	
Плотность заполнения	25%
Шаблон заполнения	Гиройд
Поддержки:	Автоматические, включены везде,
	аккуратные, печатать под мостами.
Угол нависания	40
Плотность поддержки	2,5 мм
Скорость печати	60 мм/с
Скорость печати первого слоя	20 мм/с
Шаблон поддержек	Прямолинейный

Ссылки на рекомендуемое программное обеспечение

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»:

https://www.prusa3d.com/page/prusaslicer_424/

Вариант 3

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр—милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлорсеребряный электрод сравнения, стеклянный электрод, стаканчики на 50 мл, пипетки Мора на 25,0, 20,0, 10,0 и 5 мл. Пипетка (тип 2-1-2-1) градуированная на 1,0 мл (возможно применение дозатора пипеточного), промывалка, пинцет.

Peaкmuвы: 0,0025 моль/л раствор $K_2Cr_2O_7$ и 0,001 моль/л раствор $Cr_2(SO_4)_3, 0,02$ моль/л раствор H_2SO_4 , концентрированная HNO_3 .

Приложение 1 План конкурсных материалов для проведения *практического* этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
		Кейс №1		
1.1	базовый	Электрохимическая система (гальванический элемент)	Знать понятия электрохимическая система, электрод, электрод сравнения, электродвижущая сила, потенциалопределяющие ионы, диффузионный потенциал, солевой мостик. Знать методику составления электрохимических систем (гальванических элементов).	10
1.2	повышенный	Электродвижущая сила гальванического элемента с ОВ электродами	Электродные процессы, Уравнение Нернста для ЭДС, константа равновесия электрохимического процесса, протекающего в системе.	20
1.3	высокий	Электродный потенциал исследуемой ОВ системы: экспериментальный, расчетный и справочный	Электродные процессы, уравнение Нернста для потенциала ОВ электрода, активность. Уравнение Дебая-Хюккеля (предельный закон). Расчет ОВ потенциала по уравнению Нернста.	30
		1	Сумма баллов:	60

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $\operatorname{Cr}_2\operatorname{O}_7^{2-}$, Cr_3^{3+} , H^+ Pt

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод Cr_2 O_7 $^{2-}$, Cr^{3+} $H^+|$ Pt и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей ОВ пару $Cr_2O_7^{2-}$, Cr^{3+} в стаканах на 50 мл смешивают 20 мл 0,0025 моль/л раствора $K_2Cr_2O_7$ и 10 мл 0,001 моль/л раствора $Cr_2(SO_4)_3$, добавляют 0,3 мл 0,02 моль/л раствора H_2SO_4 при помощи градуированной пипетки на 1 мл и измеряют рН. (Можно использовать дозаторы пипеточные). Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

$$t = \underline{\hspace{1cm}}^{\circ}C$$

Номе р образ ца	рН	a(H+)	Е _{г-э,эксп.} В	E _{Ag AgCl KC1} (ЭСр- 10103/3,5)* В	Е _{ОВ эксп.} , В	<i>Ег–э</i> В	Ка
1							
2				0,208			
3							

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = E_+ E_- .
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента E^0_{r-9} для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_i$$
 – заряд иона, $I = \frac{1}{2} \sum m_i \ z_i^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого OB электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacч}$ по экспериментальному значению $E_{\ OB\ эксп.}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	a(H+)	коэффиц активнос для ио ${\rm Cr_2O_7}^{2-}$	ти (γі),	активно ионо (<i>a_{mi}</i>) Сг ₂ О ₇ ²⁻	Е _{ОВ эксп} В	Е ⁰ ОВ расч., В
1						
2						
3			•			

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала $E^0_{OB\ cnpaB}$ для исследуемого OB электрода и значение стандартного электродного потенциала E^0_{OB} этого же OB электрода, рассчитанного по экспериментальным значениям $E_{OB\ эксп...}$ и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

$$\Delta = |(< E^0_{
m pacy.} > - E^0_{
m cправ.})| \cdot 100/E^0_{
m cправ.}$$
, %Для расчета процента отклонения используют среднее

значение потенциала ($< E_{\rm pacy}^0 >$.

Объясняют причину расхождения значений стандартного потенциала справочного E_{OB}^0 и E_{OR}^0 , рассчитанного по экспериментальным данным.

Таблица 3

$$t = {}^{\circ}C$$

ОВ электрод	E ⁰ , В ОВ справ.	E ⁰ ОВ расч. , В	% расхождения E ⁰ и OB справ. E ⁰ OB расч.
$Cr_2O_7^{2-}, Cr^{3+} H^+ Pt$			

Кейс №2

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

1. Слайсер: PrusaSlicer 2.6.1;

2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения практического этапа Конкурса Кейс №2

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Кейс№2

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 58;

 $\mathbf{F} = 102.$

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Prusa Slicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

Разместите 3D модель таким образом, чтобы создалось наименьшее количество поддержек (определяется по количеству материала). - 10 баллов.

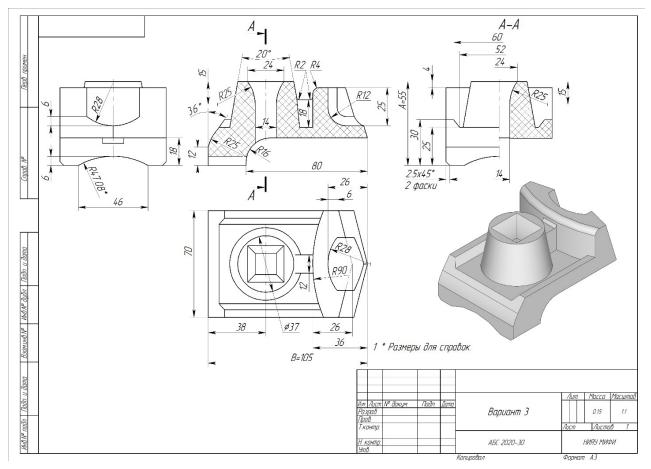


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Параметр	Значение
Высота первого слоя	0.3мм
Высота слоя	0.2мм
Ширина линии	0.4 мм
Ширина линий заполнения	0.6 мм
Ширина линии первого слоя	0.6 мм
Толщина стенки	3 линии
Горизонтальные оболочки	5 / 4
сверху / снизу, слоев	
Плотность заполнения	25%
Шаблон заполнения	Гиройд
Поддержки:	Автоматические, включены везде,
	аккуратные, печатать под мостами.
Угол нависания	40
Плотность поддержки	2,5 мм
Скорость печати	60 мм/с
Скорость печати первого слоя	20 мм/с
Шаблон поддержек	Прямолинейный

Ссылки на рекомендуемое программное обеспечение

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»:

https://www.prusa3d.com/page/prusaslicer_424/

Вариант 4

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр-милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлорсеребряный электрод сравнения, стеклянный электрод, стаканчики на 50 мл, пипетки Мора на на 25,0, 20,0, 10,0 и 5 мл. Пипетка (тип 2-1-2-1) градуированная на 1,0 мл (возможно применение дозатора пипеточного), промывалка, пинцет.

Peaкmuвы: 0,0025 моль/л раствор $K_2Cr_2O_7$ и 0,001 моль/л раствор $Cr_2(SO_4)_3, 0,02$ моль/л раствор H_2SO_4 , концентрированная HNO_3 .

Приложение 1 План конкурсных материалов для проведения *практического* этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
		Кейс №1		I.
1.1	базовый	Электрохимическая система (гальванический элемент)	Знать понятия электрохимическая система, электрод, электрод сравнения, электродвижущая сила, потенциалопределяющие ионы, диффузионный потенциал, солевой мостик. Знать методику составления электрохимических систем (гальванических элементов).	10
1.2	повышенный	Электродвижущая сила гальванического элемента с ОВ электродами	Электродные процессы, Уравнение Нернста для ЭДС, константа равновесия электрохимического процесса, протекающего в системе.	20
1.3	высокий	Электродный потенциал исследуемой ОВ системы: экспериментальный, расчетный и справочный	Электродные процессы, уравнение Нернста для потенциала ОВ электрода, активность. Уравнение Дебая-Хюккеля (предельный закон). Расчет ОВ потенциала по уравнению Нернста.	30
			Сумма баллов:	60

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $Cr_2O_7^{2-}$, $Cr^{3+}H^+|Pt$

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод $Cr_2 O_7$ ²⁻, $Cr^{3+} H^+ | Pt$ и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей OB пару $Cr_2O_7^{2-}$, Cr^{3+} в стаканах на 50 мл смешивают 25 мл 0,0025 моль/л раствора $K_2Cr_2O_7$ и 5 мл 0,001 моль/л раствора $Cr_2(SO_4)_3$, добавляют 0,3 мл 0,02 моль/л раствора H_2SO_4 при помощи градуированной пипетки на 1 мл и измеряют pH. (Можно использовать дозаторы пипеточные). Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

$$t = \underline{\hspace{1cm}}^{\circ}C$$

Номе р образ ца	рН	a(H+)	$E_{\Gamma - 9, 9$ ксп. В	E _{Ag AgCl KC1} , (ЭСр- 10103/3,5)* В	Е _{ОВ эксп.} , В	<i>Ег-э</i> В	Ка
1							
2				0,208			
3							

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = E_+ E_- .
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и

хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента E^0_{r-9} для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_i$$
 – заряд иона, $I=\frac{1}{2}\sum m_i \; {z_i}^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого OB электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacv}$ по экспериментальному значению $E_{\ OB\ pacv}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	a(H+)	коэффиц активнос для ио $Cr_2O_7^{2-}$	ти (γі),	активно ионо (<i>a_{mi}</i>) Сг ₂ О ₇ ²⁻	Е _{ОВ эксп} В	Е ⁰ ОВ расч., В
1						
2						
3						

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала E^0 ов справ для исследуемого OB электрода и значение стандартного электродного потенциала E^0 этого же OB электрода, рассчитанного по экспериментальным значениям E_{0B} эксп... и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

$$\Delta = |(< E^0_{
m pac-u.} > - E^0_{
m cправ.})| \cdot 100/E^0_{
m cnpab.}$$
, % Для расчета процента отклонения используют среднее

значение потенциала ($< E_{\rm pacy}^0 >$.

Объясняют причину расхождения значений стандартного потенциала справочного E^0_{OB} и E^0_{OB} , рассчитанного по экспериментальным данным.

Таблица 3

$$t = {}^{\circ}C$$

ОВ электрод	E ⁰ ОВ справ. , В	E ⁰ ОВ расч., В	% расхождения E ⁰ и ОВ справ. E ⁰ ОВ расч.
$Cr_2O_7^2$, Cr_3 , $H^* Pt$			

Кейс №2

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

1. Слайсер: PrusaSlicer 2.6.1;

2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения практического этапа Конкурса Кейс №2

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Кейс№2

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 58;

 $\mathbf{F} = 102.$

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Prusa Slicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

Разместите 3D модель таким образом, чтобы создалось наименьшее количество поддержек (определяется по количеству материала). - 10 баллов.

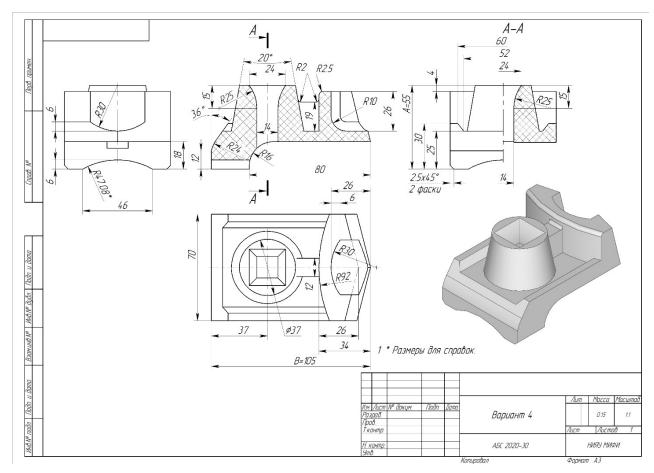


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Параметр	Значение
Высота первого слоя	0.3мм
Высота слоя	0.2мм
Ширина линии	0.4 мм
Ширина линий заполнения	0.6 мм
Ширина линии первого слоя	0.6 мм
Толщина стенки	3 линии
Горизонтальные оболочки	5 / 4
сверху / снизу, слоев	
Плотность заполнения	25%
Шаблон заполнения	Гиройд
Поддержки:	Автоматические, включены везде,
	аккуратные, печатать под мостами.
Угол нависания	40
Плотность поддержки	2,5 мм
Скорость печати	60 мм/с
Скорость печати первого слоя	20 мм/с
Шаблон поддержек	Прямолинейный

Ссылки на рекомендуемое программное обеспечение

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»:

https://www.prusa3d.com/page/prusaslicer_424/

Вариант 5

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр—милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлорсеребряный электрод стеклянный электрод, стаканчики на 50 мл, пипетки Мора на 25,0, 20,0, 10,0 и 5 мл. Пипетка (тип 2-1-2-1) градуированная на 1,0 мл (возможно применение дозатора пипеточного), промывалка, пинцет.

Peaкmuвы: 0,005 моль/л раствор $K_2Cr_2O_7$ и 0,001 моль/л раствор $Cr_2(SO_4)_3$, 0,02 моль/л раствор H_2SO_4 , концентрированная HNO_3 .

Приложение 1 План конкурсных материалов для проведения *практического* этапа Конкурса

		_	_	_	
№ задания	Уровень сложности	Уникальные кодификаторы	Контролируемые требования к	Балл	
		Конкурса	проверяемым умениям		
T.		Кейс №1		1	
	базовый		Знать понятия		
			электрохимическая система,		
			электрод, электрод сравнения,		
		Электрохимическая	электродвижущая сила,		
1.1		система	потенциалопределяющие	10	
1.1		(гальванический	ионы, диффузионный		
		элемент)	потенциал, солевой мостик.		
			Знать методику составления		
			электрохимических систем		
			(гальванических элементов).		
	повышенный	Электродвижущая сила	Электродные процессы,		
		гальванического	Уравнение Нернста для ЭДС,		
1.2		элемента с ОВ	константа равновесия	20	
		электродами	электрохимического процесса,		
		электродими	протекающего в системе.		
1.3	высокий	Электродный	Электродные процессы,		
		потенциал	уравнение Нернста для		
		исследуемой OB	потенциала ОВ электрода,		
		системы:	активность. Уравнение Дебая-	30	
		экспериментальный,	Хюккеля (предельный закон).		
		расчетный и	Расчет ОВ потенциала по		
		справочный	уравнению Нернста.	60	
Сумма баллов:					

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $Cr_2O_7^{2-}$, Cr^{3+} H^+ Pt

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод Cr_2O_7 ²⁻, Cr^{3+} H⁺| Pt и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей ОВ пару $Cr_2O_7^{2-}$, Cr^{3+} в стаканах на 50 мл смешивают 20 мл 0,005 моль/л раствора $K_2Cr_2O_7$ и 10 мл 0,001 моль/л раствора $Cr_2(SO_4)_3$, добавляют 0,3 мл 0,02 моль/л раствора H_2SO_4 при помощи градуированной пипетки на 1 мл и измеряют рН. (Можно использовать дозаторы пипеточные). Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

Номе р образ ца	рН	<i>a</i> (H [∓])	$E_{\Gamma-9,9$ ксп. В	E _{Ag AgCl KC1} , (ЭСр- 10103/3,5)* B	Е _{ОВ эксп.} , В	<i>Ег-э</i> В	Ка
1							
2				0,208			
3							

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = E_+ E_- .
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента E^0_{r-9} для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_i$$
 – заряд иона, $I=\frac{1}{2}\sum m_i \ {z_i}^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого ОВ электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacv}$ по экспериментальному значению $E_{OB\ эксп.}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	a(H+)	коэффиц активнос для ио ${\rm Cr}_2{\rm O7}^{2-}$	ти (γі),	активно ионо (<i>a_{mi}</i>) Сг ₂ О ₇ ²⁻		Е _{ОВ эксп} В	Е ⁰ ОВ расч., В
1							
2							
3			•		•		

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала $E^0_{\ OB\ cnpaB}$ для исследуемого OB электрода и значение стандартного электродного потенциала $E^0_{\ OB}$ этого же OB электрода, рассчитанного по экспериментальным значениям $E_{\ OB\ эксп...}$ и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

$$\Delta = |(< E_0^0 > - E_0^0)| \cdot 100/E_0^0$$
, %. Для расчета процента отклонения используют среднее

значение потенциала ($< E_{\rm pacy}^0>$.

Объясняют причину расхождения значений стандартного потенциала справочного E^0_{OB} и E^0_{OB} , рассчитанного по экспериментальным данным.

Таблица 3

$$t = {}^{\circ}C$$

ОВ электрод	E ⁰ ОВ справ. , В	E ⁰ ОВ расч., В	% расхождения E ⁰ и ОВ справ. E ⁰ ОВ расч.
$\operatorname{Cr}_2\operatorname{O}_7^{2^*}, \operatorname{Cr}_{,}^{+}\operatorname{H}_{,}^{+}\operatorname{Pt}_{,}^{-}$			

Кейс №2

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

1. Слайсер: PrusaSlicer 2.6.1;

2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения практического этапа Конкурса Кейс №2

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 70.

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО PrusaSlicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

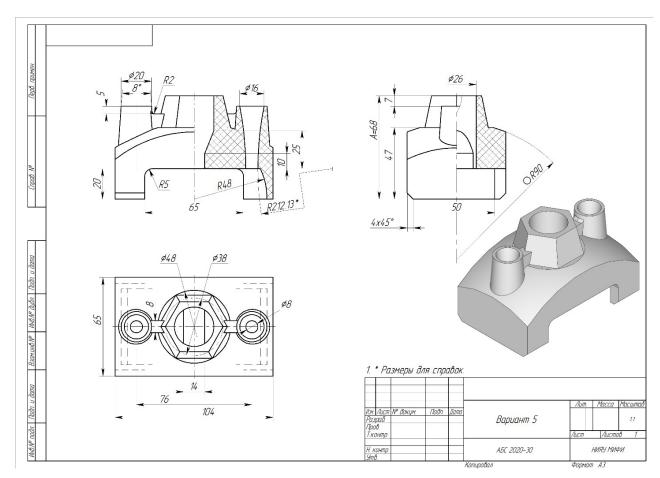


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Параметр	Значение
Высота первого слоя	0.3мм
Высота слоя	0.2мм
Ширина линии	0.4 мм
Ширина линий заполнения	0.6 мм
Ширина линии первого слоя	0.6 мм
Толщина стенки	3 линии
Горизонтальные оболочки	5 / 4
сверху / снизу, слоев	
Плотность заполнения	25%
Шаблон заполнения	Гиройд
Поддержки:	Автоматические, включены везде,
	аккуратные, печатать под мостами.
Угол нависания	40
Плотность поддержки	2,5 мм
Скорость печати	60 мм/с
Скорость печати первого слоя	20 мм/с
Шаблон поддержек	Прямолинейный

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»:

Вариант 6

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр—милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлоридсеребряный электрод сравнения, стаканчики на 50 мл, пипетки Мора на 15,0 мл, промывалка, пинцет.

Реактивы: 0,0025 моль/л растворы $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$, концентрированная HNO₃.

Приложение 1
План конкурсных материалов для проведения *практического* этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
		Кейс №1		
1.1	базовый	Электрохимическая система (гальванический элемент)	Знать понятия электрохимическая система, электрод, электрод сравнения, электрод сравнения, потенциалопределяющие ионы, диффузионный потенциал, солевой мостик. Знать методику составления электрохимических систем (гальванических элементов).	10
1.2	повышенный	Электродвижущая сила гальванического элемента с ОВ электродами	Электродные процессы, Уравнение Нернста для ЭДС, константа равновесия электрохимического процесса, протекающего в системе.	20
1.3	высокий	Электродный потенциал исследуемой ОВ системы: экспериментальный, расчетный и справочный	Электродные процессы, уравнение Нернста для потенциала ОВ электрода, активность. Уравнение Дебая-Хюккеля (предельный закон). Расчет ОВ потенциала по уравнению Нернста.	30
		справо шви	уравнению периста. Сумма баллов:	60

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-}|Pt$

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} | Pt$ и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей ОВ пару $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ в стаканах на 50 мл смешивают по 15 мл 0,0025 моль/л растворов $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$. Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

$$t = \underline{\hspace{1cm}}^{\circ}C$$

Номер образца	$E_{\Gamma o 9, 9$ ксп. $ m B}$	E _{Ag AgCl KC1} , (ЭСр- 10103/3,5)* B	E _{ОВ эксп.} , В	<i>Ег–э0</i> , В	Ка
1					
2		0,208			
3					

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = E_+ E_-
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента E^0_{r-9} для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_i$$
 – заряд иона, $I = \frac{1}{2} \sum m_i \ {z_i}^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого ОВ электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacv}$ по экспериментальному значению $E_{OB\ эксп.}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	коэффиі активности ион	и (γ _i), для		сть ионов и _{ті})	Е _{ОВ эксп} В	Е ⁰ ОВ расч.,
Соризди	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻		В
1						
2						
3						

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала $E^0_{OB\ cnpaB}$ для исследуемого OB электрода и значение стандартного электродного потенциала E^0_{OB} этого же OB электрода, рассчитанного по экспериментальным значениям $E_{OB\ эксп.}$ и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

$$\Delta = |(< E^0_{
m pacч.} > - E^0_{
m cnpab.})| \cdot 100/E^0_{
m cnpab.}$$
, %. Для расчета процента отклонения используют среднее

значение потенциала ($< E_{\rm pacy}^0 >$).

Объясняют причину расхождения значений стандартного потенциала справочного E^0_{OB} и E^0_{OB} , рассчитанного по экспериментальным данным.

Таблица 3

$$t = _{__}^{\circ}C$$

ОВ электрод	E ⁰ ОВ справ. , В	E ⁰ ОВ расч., В	% расхождения E ⁰ и OB справ. E ⁰ OB расч.
$[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} Pt$			

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

1. Слайсер: PrusaSlicer 2.6.1;

2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения практического этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 70.

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Prusa Slicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

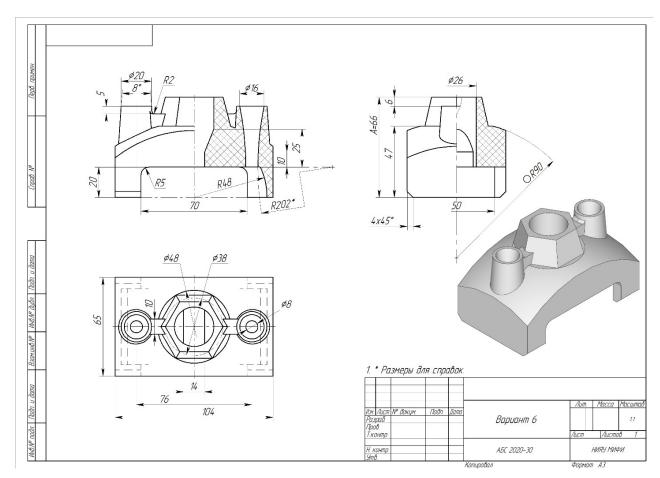


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Параметр	Значение
Высота первого слоя	0.3мм
Высота слоя	0.2мм
Ширина линии	0.4 мм
Ширина линий заполнения	0.6 мм
Ширина линии первого слоя	0.6 мм
Толщина стенки	3 линии
Горизонтальные оболочки	5 / 4
сверху / снизу, слоев	
Плотность заполнения	25%
Шаблон заполнения	Гиройд
Поддержки:	Автоматические, включены везде,
	аккуратные, печатать под мостами.
Угол нависания	40
Плотность поддержки	2,5 мм
Скорость печати	60 мм/с
Скорость печати первого слоя	20 мм/с
Шаблон поддержек	Прямолинейный

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»:

Вариант 7

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр—милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлоридсеребряный электрод сравнения, стаканчики на 50 мл, пипетки Мора на 20,0 мл и 10,0 мл, промывалка, пинцет.

Реактивы: 0,005 моль/л растворы $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$, концентрированная HNO₃.

 $\label{eq:2.2} Приложение \ 1$ План конкурсных материалов для проведения $\it npakmuчeckozo$ этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
		Кейс №1		
1.1	базовый	Электрохимическая система (гальванический элемент)	Знать понятия электрохимическая система, электрод, электрод сравнения, электродвижущая сила, потенциалопределяющие ионы, диффузионный потенциал, солевой мостик. Знать методику составления электрохимических систем (гальванических элементов).	10
1.2	повышенный	Электродвижущая сила гальванического элемента с ОВ электродами	Электродные процессы, Уравнение Нернста для ЭДС, константа равновесия электрохимического процесса, протекающего в системе.	20
1.3	высокий	Электродный потенциал исследуемой ОВ системы: экспериментальный, расчетный и справочный	Электродные процессы, уравнение Нернста для потенциала ОВ электрода, активность. Уравнение Дебая-Хюккеля (предельный закон). Расчет ОВ потенциала по уравнению Нернста.	30
		Справочный	уравнению пернета. Сумма баллов:	60

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-}]Pt$

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} | Pt$ и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей ОВ пару $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ в стаканах на 50 мл смешивают 20 мл 0,005 моль/л раствора $K_3[Fe(CN)_6]$ и 10 мл 0,005 моль/л раствора $K_4[Fe(CN)_6]$. Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

$$t = \underline{\hspace{1cm}}^{\circ}C$$

Номер образца	$E_{\Gamma o 9,9$ ксп. $ m B}$	E _{Ag AgCl KC1} (ЭСр- 10103/3,5)* B	Е _{ОВ эксп.} , В	<i>Ег–э0</i> , В	Ка
1					
2		0,208			
3					

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = $E_+ E_-$
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента E^0_{r-9} для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_i$$
 – заряд иона, $I=\frac{1}{2}\sum m_i \ {z_i}^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого ОВ электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacv}$ по экспериментальному значению $E_{OB\ эксп.}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	активности	коэффициенты активности (ү _і), для ионов		сть ионов и _{ті})	Е _{ОВ эксп} В	Е ⁰ ОВ расч.,
ооризди	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻		В
1						
2						
3						

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала $E^0_{OB\ cnpaB}$ для исследуемого OB электрода и значение стандартного электродного потенциала E^0_{OB} этого же OB электрода, рассчитанного по экспериментальным значениям $E_{OB\ эксп.}$ и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

$$\Delta = |(< E^0_{
m pacч.} > - E^0_{
m cnpab.})| \cdot 100/E^0_{
m cnpab.}$$
, %. Для расчета процента отклонения используют среднее

значение потенциала ($< E_{\rm pacy}^0 >$).

Объясняют причину расхождения значений стандартного потенциала справочного E^0_{OB} и E^0_{OB} , рассчитанного по экспериментальным данным.

Таблица 3

$$t = _{__}^{\circ}C$$

ОВ электрод	E ⁰ ОВ справ. , В	E ⁰ ОВ расч.	% расхождения E ⁰ и ОВ справ. E ⁰ ОВ расч.
$[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} Pt$			

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

1. Слайсер: PrusaSlicer 2.6.1;

2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения практического этапа Конкурса Кейс №2

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 70.

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Prusa Slicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

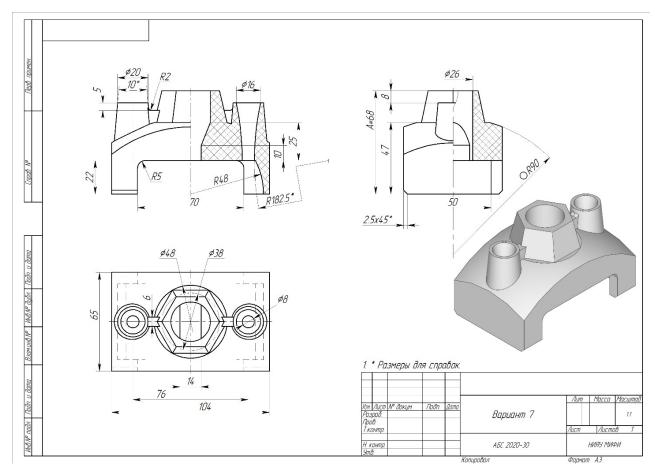


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Значение
0.3мм
0.2мм
0.4 мм
0.6 мм
0.6 мм
3 линии
5 / 4
25%
Гиройд
Автоматические, включены везде,
аккуратные, печатать под мостами.
40
2,5 мм
60 мм/с
20 мм/с
Прямолинейный

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»:

Вариант 8

Кейс №1

Оборудование и принадлежности для кейса №1: высокоомный милливольтметр (допустимо использовать лабораторный рН-метр—милливольтметр рН-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительновосстановительный электрод (ОВ электрод), хлоридсеребряный электрод сравнения, стаканчики на 50 мл, пипетки Мора на 10,0 и 20,0 мл, промывалка, пинцет.

Реактивы: 0,005 моль/л растворы $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$, концентрированная HNO₃.

Приложение 1
План конкурсных материалов для проведения *практического* этапа Конкурса

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
		Кейс №1	· · · · · ·	I
1.1	базовый	Электрохимическая система (гальванический элемент)	Знать понятия электрохимическая система, электрод, электрод сравнения, электродвижущая сила, потенциалопределяющие ионы, диффузионный потенциал, солевой мостик. Знать методику составления электрохимических систем (гальванических элементов).	10
1.2	повышенный	Электродвижущая сила гальванического элемента с ОВ электродами	Электродные процессы, Уравнение Нернста для ЭДС, константа равновесия электрохимического процесса, протекающего в системе.	20
1.3	высокий	Электродный потенциал исследуемой ОВ системы: экспериментальный, расчетный и справочный	Электродные процессы, уравнение Нернста для потенциала ОВ электрода, активность. Уравнение Дебая-Хюккеля (предельный закон). Расчет ОВ потенциала по уравнению Нернста.	30
		оприво шви	уравнению тернета. Сумма баллов:	60

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-}]Pt$

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод $[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} | Pt$ и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и электродных потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей ОВ пару $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ в стаканах на 50 мл смешивают 10 мл 0,005 моль/л раствора $K_3[Fe(CN)_6]$ и 20 мл 0,005 моль/л раствора $K_4[Fe(CN)_6]$. Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°C, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

$$t = \underline{\hspace{1cm}}^{\circ}C$$

Номер образца	$E_{\Gamma o 9, 9 ext{KCH.}}$ В	E _{Ag AgCl KC1} ('ЭСр- 10103/3,5)* B	E _{ОВ эксп.} , В	<i>Ег–э0</i> , В	Ка
1					
2		0,208			
3					

^{*}Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

- 1. Записывают схему исследуемого гальванического элемента.
- 2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.
- 3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = E_+ E_-
- 4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого гальванического элемента $E^0_{\Gamma-9}$ для последующего расчета константы равновесия Ka. Значения вносят в таблицу 1.

- 5. Рассчитывают ионную силу растворов I с учётом разбавления при смешении электролитов, принимая во внимание, что различиями в численных значениях молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими.
- 6. Рассчитывают коэффициенты активности (γ_i) и активность (a_{mi}) потенциалопределяющих ионов, используя уравнение Дебая—Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где
$$z_i$$
 – заряд иона, $I = \frac{1}{2} \sum m_i \ {z_i}^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая— Хюккеля (первое приближение) ограничено растворами с ионной силой не более 0,01 моль/кг. Точность расчета коэффициентов активности для растворов с большей ионной силой снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого ОВ электрода, рассчитывают значение стандартного электродного потенциала $E^0_{\ OB\ pacч}$ по экспериментальному значению $E_{OB\ эксп.}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	коэффициенты активности (γ_i), для ионов		активность ионов (a_{mi})		Е _{ОВ эксп} В	Е ⁰ ОВ расч.,
ооризди	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻	Б	В
1						
2						
3						

- 8. В таблицу 3 вносят справочное значение стандартного электродного потенциала $E^0_{OB\ cnpaB}$ для исследуемого OB электрода и значение стандартного электродного потенциала E^0_{OB} этого же OB электрода, рассчитанного по экспериментальным значениям $E_{OB\ эксп.}$ и значениям активностей всех ионов, участвующих в электродной полуреакции.
- 9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

$$\Delta = |(< E^0_{
m pacч.} > - E^0_{
m cnpab.})| \cdot 100/E^0_{
m cnpab.}$$
, %. Для расчета процента отклонения используют среднее

значение потенциала ($< E_{\rm pacy}^0 >$).

Объясняют причину расхождения значений стандартного потенциала справочного E^0_{OB} и E^0_{OB} , рассчитанного по экспериментальным данным.

Таблица 3

$$t = \underline{\hspace{1cm}}^{\circ}C$$

ОВ электрод	E ⁰ ОВ справ. , В	E ⁰ ОВ расч., В	% расхождения E ⁰ и OB справ. E ⁰ OB расч.
$[Fe(CN)_6]^{3-}, [Fe(CN)_6]^{4-} Pt$			

Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

1. Слайсер: PrusaSlicer 2.6.1;

2. САПР: Компас-3D v21 (21.0.24), T-flex CAD 17 (17.0.96).

Приложение 1 План конкурсных материалов для проведения практического этапа Конкурса Кейс №2

№ задания	Уровень сложности	Уникальные кодификаторы Конкурса	Контролируемые требования к проверяемым умениям	Балл
1	базовый	Обзор необходимых инструментов	По чертежу построить 3D модель в САПР.	20
2	повышенный	Параметризация и оптимизация моделей для 3D печати	Масса изделия и импорт 3D модели в ПО PrusaSlicer.	20
3	высокий	Параметры 3D печати	Настроить параметры печати в ПО PrusaSlicer.	10
4	высокий	Экспорт модели для 3D печати	Разместить модель таким образом, чтобы создалось наименьшее количество поддержек.	10
			Сумма баллов:	60

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новые значения размерам, отмеченными буквами:

A = 70.

Примените к модели материал АБС пластик 2020. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Prusa Slicer. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки — Voron 0. Установки принтера — по умолчанию, при выборе параметров печати использовать сопло 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати, температуру стола, а также настройки обдува укажите наиболее подходящие для материала ABS. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности.

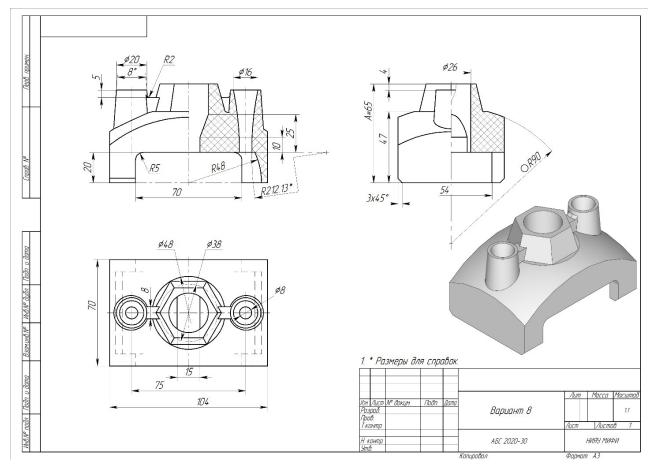


Рисунок 1. Конкурсное задание

Таблица 1. Параметры печати

Значение
0.3мм
0.2мм
0.4 мм
0.6 мм
0.6 мм
3 линии
5 / 4
25%
Гиройд
Автоматические, включены везде,
аккуратные, печатать под мостами.
40
2,5 мм
60 мм/с
20 мм/с
Прямолинейный

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия Т-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «PrusaSlicer»: