Спецификация конкурсных материалов для проведения практического этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» в номинации «Инженерный класс» по химикотехнологическому направлению

1. Назначение конкурсных материалов

Материалы *практического* этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» (далее — Конкурс) предназначены для оценки уровня *практической* подготовки участников Конкурса.

2. Условия проведения

Практический этап Конкурса проводится в *очной форме на базе РТУ МИРЭА*. При выполнении работы обеспечивается строгое соблюдение порядка организации и проведения Конкурса.

3. Продолжительность выполнения

На выполнение заданий практического этапа Конкурса отводится 90 минут.

4. Содержание и структура

Задания практического этапа Конкурса разработаны преподавателями образовательных организаций высшего образования, участвующих в проекте «Инженерный класс в московской школе».

Индивидуальный вариант участника выдается во время проведения практического этапа Конкурса из базы конкурсных заданий.

Индивидуальный вариант участника включает 1 кейсовое задание, базирующееся на содержании элективных курсов "Химические и физико-химические методы анализа" и "Инженерный практикум".

5. Система оценивания

Задание считается выполненным, если ответ участника совпал с эталоном. Каждое задание оценивается в 10 или 20 баллов. Максимальный балл за выполнение всех заданий — 60 баллов. Для получения максимального балла за практический этап Конкурса необходимо дать верные ответы на все задания.

6. Приложения

- 1. Обобщённый план конкурсных материалов для проведения практического этапа Конкурса.
- 2. Демонстрационный вариант конкурсных заданий практического этапа Конкурса.

Обобщённый план конкурсных материалов для проведения практического этапа Конкурса

№ задания	Уровень сложности	Темы элективного курса «Химические и физико-химические методы анализа»	Контролируемые требования к проверяемым умениям	Балл
1,2	повышенны й	Введение Основные понятия титриметрического анализа Основы качественного анализа	Освоение техники количественного анализа методом титрования.	30
3-5	й	Методы кислотно- основного титрования Методы окислительно- восстановительного титрования Методы комплексонометрическог о титрования	Обработка результатов титрования. Расчет концентрации и погрешностей титрования.	30
		•	Сумма баллов:	60

Демонстрационный вариант практического этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» в номинации «Инженерный класс» по химикотехнологическому направлению

Количественное определение содержания ионов цинка в анализируемом растворе методом комплексонометрического титрования

Формулировка задания.

Задание.

Методом комплексонометрического титрования, определить молярную концентрацию и массу ионов цинка в анализируемом растворе, выданном преподавателем.

Примечание: в случае необходимости анализируемый раствор может быть выдан повторно преподавателем только один раз.

Реактивы: $0.05\,$ М раствор трилона Б (динатриевая соль этилендиаминтетрауксусной кислоты, ЭДТА), раствор аммиачного буфера (pH = 10), индикатор эриохром черный Т

Оборудование: Бюретка 25-50 мл -1 шт, мерная колба 100 мл, колбы Эрленмейера -100 мл -3шт, пипетка Мора 10 мл -1 шт, груша резиновая -1 шт, воронка для бюретки -1 шт., мерный цилиндр 50 мл -1 шт., шпатель для отбора индикатора -1 шт.

Методика определения: Из мерной колбы на 100 мл в колбу Эрленмейера отбирают пипеткой Мора 10 мл анализируемого раствора, добавляют 20-25 мл аммиачного буферного раствора, отмеренного с помощью цилиндра, и вносят на кончике шпателя 5-6 мг индикатора эриохрома черного Т и интенсивно перемешивают содержимое колбы. Наблюдают окрашивание раствора в красно-фиолетовый цвет. Полученный раствор титруют стандартным растворомтрилона Б до перехода окраски индикатора из краснофиолетовой в синюю. Титрование осуществляют 5 раз, до получения не менее 3-х результатов, не отличающихся более чем на 0,1 мл.

Результаты анализа отразить в виде отчета, в котором необходимо ответить на следующие вопросы:

- 1. Указать результаты титрования (объем затраченного титранта для каждой пробы) в виде таблицы.
- 2. Вывести конечную формулу и рассчитать молярную концентрацию (моль/л) цинка в анализируемом растворе. Ответ записать с точностью до тысячных.
- **3.** Вывести конечную расчетную формулу и рассчитать массу ионов цинка (г) в анализируемом растворе. Ответ записать с точностью до сотых.
- **4.** Произвести расчет относительной погрешности по нижеприведенной формуле $\delta = (|m_{\text{эксп}} m_{\text{контр}}|/m_{\text{контр}}) \cdot 100\%$, где $m_{\text{контр}}$ масса в анализируемой контрольной пробе, полученная у преподавателя после расчета $m_{\text{эксп}}$
- **5.** Теоретически описать химические процессы, протекающие при комплексонометрическом титровании.

Критерии оценивания

Критерии оценивания Бал. 1. Работа в соответствии правилами техники безопасности и эксплуатации лабораторной посуды: 20 Правильная техника работы с бюреткой 5 б Правильная техника работы с аналитической пипеткой (отбор аликвотной части) 5 б Правильная техника проведения процедуры титрования 10 2. Вывод конечной формулы (с расчетом) молярной концентрации ионов 10				
лабораторной посуды: Правильная техника работы с бюреткой Правильная техника работы с аналитической пипеткой (отбор аликвотной части) Правильная техника проведения процедуры титрования 10	۱ ۸			
Правильная техника работы с бюреткой Правильная техника работы с аналитической пипеткой (отбор аликвотной части) Правильная техника проведения процедуры титрования 2.	, 0			
Правильная техника работы с аналитической пипеткой (отбор аликвотной части) Правильная техника проведения процедуры титрования 2.				
Правильная техника работы с аналитической пипеткой (отбор аликвотной части) Правильная техника проведения процедуры титрования 2.	б			
Правильная техника проведения процедуры титрования 10 2.	б			
2.				
) б			
Вывол коненной формулы (с расчетом) молярной концентрации монов 10				
Burbod koncenion dopmynu (e pacterom) monaphon kongenipagan nonob 10	0 б			
цинка в анализируемом растворе				
Представлена конечная формула (без вывода) и расчет				
Не представлена формула и отсутствует расчет 0 0	б			
3.				
Вывод конечной формулы (с расчетом), массы ионов цинка в 10) б			
анализируемом растворе Представлена конечная формула (без вывода) и расчет 56				
Представлена конечная формула (без вывода) и расчет				
Не представлена формула и отсутствует расчет				
4. Представлена формула и представлен расчет относительной погрешности 10 (
Представлена формула и представлен расчет относительной погрешности				
Представлена формула и не представлен расчет относительной погрешности				
Не представлена формула и не представлен расчет относительной				
погрешности 0 б	U			
5.				
) K			
Подробно описаны все химические процессы, протекающие при				
комплексонометрическом титровании При описании химических процессов учащимся допущено ряд				
При описании химических процессов учащимся допущено ряд неточностей				
Химические процессы не описаны вовсе	б			

Максимальный балл, который может получить участник за практическую часть — 60баллов. Минимальный балл — 30 б

Ответы и решение демонстрационного варианта

1. Результаты титрования удобно представлять в виде таблицы:

No	$V_{nun}(\mathbf{Z}\mathbf{n}^{2+})$, мл	<i>V</i> (ЭДТА), мл
1		
2		
3		
4		
5		

$$V_{\text{ср.}}(ЭДТА) = ..., мл$$

2. <u>Вывод конечной расчетной формулы для определения молярной концентрации</u> (моль/л) ионов цинка в анализируемом растворе:

$$n(\exists \Pi TA) = n(Zn^{2+})$$
 $c(\exists \Pi TA) \cdot V_{cp.}(\exists \Pi TA) = c(Zn^{2+}) \cdot V_{nun}(Zn^{2+})$
 $c(Zn^{2+}) = c(\exists \Pi TA) \cdot V_{cp.}(\exists \Pi TA) / V_{nun}(Zn^{2+})$

3. Вывод конечной расчетной формулы для определения массы ионов цинка в анализируемом растворе

$$n(ЭДТА) = n(Zn^{2+})$$

$$c(ЭДТА) \cdot V_{cp.}(ЭДТА) = c(Zn^{2+}) \cdot V_{nun}(Zn^{2+})$$

$$c(Zn^{2+}) = c(ЭДТА) \cdot V_{cp.}(ЭДТА) / V_{nun}(Zn^{2+})$$

также
$$c(Zn^{2+}) = n(Zn^{2+})/V_{\kappa}(Zn^{2+}) =$$

 $=m(\mathbf{Z}\mathbf{n}^{2+})/M(\mathbf{Z}\mathbf{n}^{2+})\cdot V_{\kappa}(\mathbf{Z}\mathbf{n}^{2+})$, следовательно,

$$m(Zn^{2+}) = \underline{c(\Im \underline{\mathcal{I}}TA) \cdot V_{\text{cp.}(} \underline{\Im}\underline{\mathcal{I}}TA) \times} M(Zn^{2+}) \cdot V_{\kappa}(Zn^{2+})$$

$$V_{\textit{nun}}(Zn^{2+})$$

где,

n(ЭДТА) – количество вещества ЭДТА, моль

 $n({\rm Zn^{2^+}})$ – количество вещества цинка в анализируемом растворе, моль

 $V_{\rm cp}(ЭДТА)$ – средний объем добавленного титранта, мл

 V_{κ} – объем колбы, в мл

 $V_{\text{пип}}$ – объем пипетки, в мл

 $m(Zn^{2+})$ — масса ионов

цинка в анализируемом

растворе, в г

 $M({\rm Zn}^{2^+})$ — молярная масса цинка, г/моль

4. Теоретическое описание химических процессов, протекающих в результате комплексонометрического титрования

При взаимодействии трилона Б с гидратом аммиака происходит депротонирование индикатора и образование комплексного соединения иона цинка с индикатором. Также происходит связывание ионов оксония с молекулами гидрата аммиака.

При взаимодействии титранта с аммиачным буферным раствором протекает реакция с образованием устойчивого при данном значении рН аниона ЭДТА. Далее протекает химическая реакция взаимодействия титранта с ионами цинка. В конечном итоге комплекс цинка с индикатором разрушается поскольку образуется более устойчивыйкомплекс с ЭДТА и высвобождается свободный индикатор.